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The possible occurrence of oscillatory phenomena during the burn- 
ing of powder has been indicated in [1-4]. The problem of self-oscil- 
lations under constant pressure and of forced osciUations under variable 
pressure has been examined in a close-to-harmonic approximation in 
[2-8]. The results of these papers, however, are applicable only to 
such burning conditions for which the corresponding problem is weakly 
nonlinear. For strong nonlinear relationships, i.e., conditions particu- 
larly characteristic for nonstationary burning processes, a solution to 
the analogous problem was not obtained. In the following, an attempt 
to flU this gap to some degree is made for the case in which the pow- 

der burns in a half-closed volume, while the oscillations are close to 
being discontinuous. 

In dimensionless form, the equations describing the burning of pow- 
der in a half-closed volume, assuming a linear relation between the 

stationary burning rate and the initial temperature, have the form 

O0 0 ( 00 § r ) d~ 
or - a~ - ~  , ~ - ~  = G) - ~ ,  

n. ~ I-~,~ [l § (1 4~ aO y/, 

for the following initial and boundary conditions: 

n ~ l ,  ( o = t ,  O = e  -~ for z=O, 

ao 
0 ( 0 , ~ ) ~ t ,  O(:,o,'v)=O, -8~-~ ~= = 0 .  

Here, 0, v, w, g, and r all dimensionless, are the temperature, 
pressure, burning rate, spatial coordinate, and time, respectively; /5 is 
a parameter which characterizes the level to which the powder is 
heated; y is the ratio of the gas evolution time to the solid state relax- 
ation time under initial pressure; p is the ratio of the mass velocity of 
gas evolution for a given nozzle cross section and initial pressure to the 
gas mass evolved per unit time by the entire powder area understeady- 
state conditions at the same pressure; and v is the exponent in the ex- 
pression which describes the steady-state burning rate as a function of 
the initial temperature and pressure. 

We use the method of integral relations [6-9] to solve the heat- 
conduction equation. The function 0 (g, r)  is sought in the form 

0(L r ) =  [1 - - / ( r ) l e  -~ ~ / ( T ) e  -~(-)~', 

where ~(T) is a certain bounded function. The use of this form isclearly 
advantageous, for example, in the case of relatively slow varying ve- 
locity and pressure. As a result of computations typical for the method 
of integral relations [6], the initial problem reduces to me solution of 

a system of equations of the form 

dy B d~ 
T dr - -  A -Y'  dr ~ Y '  

A = (Tg ~ n) 2 --  n~,  B ~- (TY q- n) s (vn-lY --  TY "]- nv --  ~). (1) 

System (i) has two steady states 

yt ~  ~1 ~  y o =  0, ~z~ ~  t .  

Let us assume that y << I. Then we obtain two differential equa- 
tions with a small parameter in front of the derivative. It is well 
known [10] that relaxation oscillations can arise in such a system. The 
behavior (characteristic for relaxation processes) of the phase point in 
the phase space can be represented in the following way. If the phase 
point is situated at a point remote from the steady-state curve of the 
first equation in (1) 

Fig. I 

B/A - - y =  0, (2) 

then the variable y varies rapidly, since 

d T - -  T 

At the same time, the variable ~r remains constant in the first ap- 
proximation. Indeed, by performing the substitution t = r / y ,  instead of 

(1), we get 

dy B dzr 
d--t----- . -T--  y' dt - -  TY.  (3) 

In other words, the derivative dTr/dt is roughly zero, whereas the 
derivative dy/dt differs appreciably from zero (the phase point is situa- 
ted at a point remote from the curve S). The variation of y and Ir will 
be of the same nature until the function A/B - y  approaches zero, i.e., 
until the phase point comes to lie in the y-vicinity of one of thestable 
steady states of the equation of rapid motion. As soon as this takes 
place, the variables y and 7r begin to vary at comparable rates. As a 
result, the steady state defined by Eq. (2) will shift, and the phase 
point of system (1) will, in its motion, accompany this shift of the 
steady state in the phase space. The nature of the motionvaries abruptly 
as soon as the separation point has been reached [11], at which 

a (B/A) / au-- I  = O. 

Fig. 2 
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The variable y again will vary rapidly until the phase point ap- 
proaches the other stable steady state of Eq. (2). One of the possible 
variants of phase representation in shown in Fig. 1, where P is the 
initial position of the phase point, and b and d are separation points, 
Figure 2 shows the plots of 7r and y vs. time that correspond to this case. 

In order that a limiting cycle (the contour a, b, c, d) exist in our 
system, it is sufficient to satisfy the following conditions: 

1) When curve S passes across the steady state of system (1), y must 
change its sign. 

2) The steady state must be unstable. 
3) The straight line ~r = ~r* must: 

a) either cut curve S not only at the singular point, but at least 
at two more points at which y is of different sign, in which ease the 
derivatives ~ (B/A)/a~r at these points must be strictly less than zero; 

b) or must cut curve S at least at onepoint(where 0 (B/A)/alr < 0), 

while the steady state must be doubly degenerate. 
Condition b) is limiting for case a) when the singular point is a 

euspidal point of the first kind. 
Since the steady state lr* = 0 corresponds to the absence of burning 

in the chamber, the following analysis will be performed in the prox- 
imity of the singular point ~r = 1. 

It is not difficult to obtain relationships between the parameters/~ 
and u, which, if satisfied, lead to wave (periodic) solutions. Let us as- 
sume that for r = 0, the system is in an unstable steady state ~r* = 1. 
Neglecting the terms with ~,4 and ~,s, from Eq. (2), we find 

~'f~ (i - -  3v) ~- ya? (2a q- 3vn ~- 6?z 2 -- 37n 'j+t) -}- 

_~_ y (~2 __ nvl3 T 4? u a --  3?g '~+2 - - v u  2) -~ u a --  rt v+s = 0. (4) 

Conditions 1)-3) are satisfied if, after substitution of Ir = I into Eq. 
(4), this equation will either have two real roots of different sign, or a 
double zero root. In the first case, u + ~ > I and u < 1/3 must be ful- 
filled (with an accuracy to terms containing y), and in the second case, 
-/3 + u = i must be fulfilled for any u. The maximum and minimum 

values of the oscillation amplitude can be determined either from the 
condition of a zero determinant of Eq. (4), or from the condition [11] 

O B / A  B 
Oy = 1 ,  --~- --  y = 0. 

Neglecting the time of rapid motions, the oscillation period T is 
determined from the relation [10] 

Ymax - •m ax 

T= y +  -V' 
Yfflin --Ymin 

where y is a root of Eq. (4), while + Ymax and t Ymin are obtained from 
the same equation by substituting ~r = irma x and ~r = ~min. 

The results obtained should be treated as qualitative for the follow- 
ing reasons: 

1) as a functional relation between w, It, and 00/0g we have taken 
an expression that corresponds to a linear dependence of the steady- 
state burning rate on the initial temperature, which is not always the 
case; 

2) the initial system of equations was solved under the conventional 
assumptions regarding the burning process at the powder surface at a 
constant temperature, which in itself is a rough approximation; and 

3) the method of integral relations, employed in the analysis, is an 
approximate method, whose accuracy cannot be assessed without a 

computer. 
It should be noted that assumptions 1) and 2) can be removed at the 

expense of complicating the computations. In principle, assumption 3) 
can be also eliminated, since in each concrete ease, the approximate 
solution may be made to approach closely the exact solution by synthe- 
sizing the appropriate relation for 0. As a final comment we wish to 
warn against making the error of assuming that, owing to its smallness, 
the parameter y has an insignificant influence on the characteristic of 
the process. The point is that the critical value Y. [1] may in its turn 

be very small and, consequently, regardless of the condition y << 1, the 
parameter y will continue to be a factor decisively affecting thesteadi- 

hess or unsteadiness of burning. 
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